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Abstract

The effects of three gyroless rotor feedback systems - coning

feedback, proportional tilting feedback and a combination of these -

on the rotor-body dynamics of hingeless rotorcraft are studied

with a simplified analytical model in the advance ratio range from

0 to .8. Combinations of feedback phase angles and control phase

angles are selected to minimize control cross coupling and control

sensitivity changes between low and high speed flight. For the

feedback systems thus selected the effects of feedback gain and

control actuator time lag on the stability both with fixed hub

and in free flight is studied, whereby the rotorcraft is free in

pitch, roll and vertical motion but otherwise restrained. For

the free flight conditions the effects of a horizontal tail are

also determined in itself and in combination with the rotor
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feedback systems. Finally random responses to atmospheric tur-

bulence are determined for the various configurations within

the range of stable behavior. The survey was made with two

hingeless rotors: a three bladed rotor with uniform mass and

stiffness blades having a first flap-bending frequency of 1.21,

and a three bladed rotor with tapered in thickness blades having

a first flap bending frequency of 1.47. In both cases gyroless

rotor feedback systems could be determined which in combination

with a small horizontal tail removed control cross-coupling,

control oversensitivity, pitch divergence and gust oversensitivity

up to .8 rotor advance ratio. Because of the various simpli-

fications in the analytical model the results represent mainly

a trend study. Reliable absolute characteristics would require

more sophistication in the analytical model.
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Nomenclature

a Lift slope

b Number of blades per rotor

c Blade chord

Cij or C Aerodynamic blade damping coefficient

D Drag force

g Acceleration of gravity

h Distance hub-aircraft c.g.

I Moment of inertia

Kij or K Aerodynamic blade stiffness coefficien1

Kp , Ko Proportional and coning feedback gains

L Rolling moment, or lift force

M Pitching moment

Aircraft mass, or blade mass per
m unit length, or aerodynamic

blade moment

mr Total blade mass

p First natural blade frequency

p Rolling velocity, positive right

q Pitching velocity, positive up

R Rotor radius

r Yawing velocity, positive right

S Mass moment

t Time

U or U Forward velocity

UT Tangential velocity



Up Normal velocity

V or v Velocity to right

W or w Downward velocity

x Non-dimensional radial distance

X Force in forward direction

Y Force to right

Z Force in downward direction

al Pitching angular deflection,
positive down

aII Rolling angular deflection,
positive left

Blade flapping angle for flexible
blade defined by straight line
through tip

8I Forward rotor tilting angle

BI1  Left rotor tilting angle

Control phase angle, or roll
attitude earth fixed

b Blade inflow angle

Azimuth angle, or yaw angle earth
fixed

y= acR2/ x2dm Rigid blade Lock number

S= pacR2/fn2dm Model Lock number, first mode

61 Forward control input

6TI Left controL input

6o Collective control input

Inflow ratio, positive up

Advance ratio

R Rotor angular speed



ix

wNon-dimensional frequency

P Air density

a Standard deviation, or blade solidity

T Control actuator time constant

6 Blade pitch angle, or aircraft
attitude angle, earth fixed

81 Blade linear twist

81 = -es  Forward cyclic pitch

8 = ec Left cyclic pitch

First blade flap-bending mode
with unit tip deflection

§ Real part of characteristic value

Superscripts

d.*/dt

Space-fixed reference system

d**/dx

Subscripts

b Blade

h Hub or rotor

k kth blade

xyz Referring to x,y,z body axes
(forward, right, down)

u,v,w,p,q,r,8I ,8 II I 'II Derivatives

o Mean value for all blades

Integration

/ Indicates that integration limits
depend on flow region

Note: The same symbols are used also for non-dimensional quan-
tities for which unit length = R, unit velocity = OR, unit
force = mR92, unit moments about x,y,z axes: Q21x,S2Iy,fl2jz



Introduction

Reference 1 dealt with flap bending corrections to the

rigid blade analysis of lifting rotors and came to the con-

clusion that except for very high advance ratios hub moments

and stability characteristics of hingeless rotors can be computed

with reasonable approximation if only the first rotating flap

bending mode is considered. This result is in essential agree-

ment with Reference 2 which, however, indicates that at low blade

flap frequencies increasing effects of the second flap bending

modes beyond rotor advance ratios of .5 occur. Reference 2 uses

an expansion of the blade deflection in terms of non-rotating

natural modes. When using rotating modes as in Reference 1 the

effects of second and higher modes are less important. The con-

clusions of References 1 and 2 are in contradiction to those of

Reference 3, where rotating natural modes were used. Reference

3 shows even at the advance ratio of .5 very large second mode

effects on the blade response to cyclic pitch as expressed by

the trim values, particularly for 60 twisted blades. The work

reported in the following section was directed toward finding

an explanation for this discrepancy. This effort was successful

and confirmed the findings of References 1 and 2 that at .5

advance ratio hingeless rotor hub moments can be approximately

determined with a single elastic flap bending mode analysis.

The result pertains to a linear analysis including reversed flow

effects and moderate blade twist. The result may not be valid

for non-linear high lift stall conditions and for highly twisted
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blades. Also the second flap-bending mode becomes increasingly

important for rotor advance ratios beyond 1.0. 
For conventional

advance ratios up to .4 References 2 and 4 show that even the

rigid blade analysis with an equivalent hinge off-set gives ap-

proximate hub moments and can therefore be used in the flight

dynamics of hingeless rotorcraft. In the rotor-body dynamics

studied in this report the .4 rotor advance ratio cases have

been computed with the rigid blade model, while the .8 rotor ad-

vance ratio cases used elastic flap-bending of the blades using

the first mode only.

The purpose of the rotor-body dynamics study is to shed some

light on the question of how to best overcome the disadvantages of

hingeless rotor craft with respect to control and stability

characteristics at high rotor advance ratio. Hingeless rotor-

craft, on which much interest has been recently focused because

of their expected better maintainability, have good handling

qualities at low advance ratio. As compared to articulated

rotorcraft the response to cyclic pitch input occurs with a much

shorter time delay, the pitch and roll damping values are much

higher, so is the control power which allows a larger center of

gravity travel of the aircraft. However, the handling qualities

of hingeless rotorcraft deteriorate with increasing advance ratio.

The longitudinal control sensitivity increases substantially,

control cross coupling effects occur, pitch-up divergence develops

which increases with advance ratio and the rotorcraft becomes

increasingly gust sensitive. All of these trends take place also



in articulated rotorcraft with off-set hinges, only to a lesser

degree. Because of its high control power ant' unfavorable

handling qualities at high advance ratio t1 hingeless rotor-

craft is a good candidate for a fly-by-wire control system with

full authority feedback controls. Theoretically one need not

measure rotor states but only some of the body state variables

like rates of pitch, roll and yaw. The remaining state variables

can be estimated with the help of rn on board computer and then

used as inputs to a feedback system optimized with respect to

a certain quadratic performance index which could include dynamic

loads and handling qualities. Quite apart from the fact that

such a system proposed for example in Reference 5, will remain

beyond the state of the art for some time, it has a basic defect

since it assumes that the parameters of the rotor-body dynamic

system are known. For a rotorcraft these parameters are not

only time varying but they also depend on the state, since the

system is non-linear, and they are only incompletely known.

Pending the solution of these difficulties and the acceptance of

full authority real time computer controlled fly-by-wire systems,

there are- wo ways of solving the problem. The first way is to

use an inner loop multiple channel electronic (or fluidic) feed-

back system, possibly with inputs from rotor states, but

otherwise similar to present ASE systems. In case of failure of

one channel thi pilot would reduce speed to a level where he

could safely revert to the mechanical back up controls in case of

a complete failure of the electronic system. Such a system is



described in Reference 6. The second way is to use an integrated

mechanical rotor feedback system with the safety features of the

primary controls. This approach was taken for the various

Lockheed helicopter prototypes. The original Lockheed feedback

control system suffered from spurious feedbacks from blade torsion

and blade edgewise motions and has been replaced by one with pure

blade flapping feedback described and analysed in Reference 7.

The system is rather complex since it uses a freely floating

spring restrained and damped gyroscope. The system, though quite

effective in alleviating a step gust, is not very effective in

reducing dynamic rotor loads from atmospheric turbulance.

In the following a number of gyroless rotor feedback systems

are studied with respect to their effects on control sensitivity,

control crpss-coupling, stability with fixed hub, stability of

the rotor-body system and atmospheric turbulence response. It

is assumed that the feedback makes use of the blade root flap

bending deflections as direct inputs to the hydraulic control

actuators which respond with a first order time lag. If the

control system above the actuators is sufficiently flexible, a

purely structural feedback of flap-bending and lag-bending

deflections into blade pitch is possible and has been studied in

References 4 and 8. These structural feedbacks are limited in

their potential effects by the usual requirement of a stiff con-

trol system. They nevertheless can considerably improve the

handling characteristics of hingeless rotorcraft at moderate

rotor advance ratios. For higher advance ratios feedbacks to

the input side of the control actuators are needed.
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Since equations for the rotor-body dynamics have not been

published to date - though most of the helicopter manufacturers

have developed such analytical models - the equations are first

presented for the general non-linear case and subsequently

linearized. The equations include reversed flow effects but they

do not include dynamic inflow, stall or large angle effects.

The equations also do not include edgewise or torsional blade

flexibility, though some of the rotor feedback systems studied

could be approximated by elastic and inertial couplings between

flap-bending and blade pitch to which a steady edgewise blade

deflection can contribute. From studies like Reference 6 it

appears that rotor feedback systems using blade flapping as inputs

are not substantially affected by the edgewise blade dynamics,

unless edgewise moments couple with the rotor controls as was

the case for the original Lockheed gyro control system.

The rotor feedback systems are first screened with respect

to minimizing control cross coupling and longitudinal control

sensitivity changes. Those which result in low cross coupling

and low control sensitivity changes over the flight range from

0 to .8 advance ratio are then further studied with respect to

fixed hub stability limits and free body stability limits, at

.4 and .8 advance ratio whereby linear longitudinal and lateral and

angular yaw motions were restrained to concentrate on the problem

of pitch-roll divergence. The numerical examples refer to a

winged helicopter with two types of blades: a relatively soft

constant thickness blade with first flap-bending frequency of 1.21,
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and a stiff tapered thickness blade with a flap-bending frequency

of 1.47. The effects of varying gain factors and actuator time

constants are studied for three feedback systems. For some of

the configurations responses to atmospheric turbulence are de-

termined for an advance ratio of .8.

It should be noted that even the softer of the two hinge-

less rotor configurations studied herein with a flap-bending

frequency of 1.21 is relatively stiff as compared to current

hingeless rotors which vary in blade flap bending frequency

from 1.06 to 1.12. The designs with stiffer blades are

structurally easier to handle and alleviate the large edgewise

blade bending moments from inertial forces inherent in

hingeless rotor types, However, the detrimental flying

qualities at high advance ratio are getting worse with increasing

flap-bending stiffness and the need for rotor feedback systems

becomes more urgent. Since we are here interested in the

rotor-body dynamics as affected by rotor feedback systems, a

higher blade flap bending stiffness than currently used has

been assumed for the constant thickness blade.
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Effects of Coupling Between Blade Flap-Bending Modes

The problem of explaining the discrepancies between References

1 and 2 on the one side and Reference 3 on the other side has

been briefly treated in Reference 9. Here a somewhat more de-

tailed discussion will be given.

The equations of blade flap bending as derived in Reference

1 are

(1/y) + (1/2) Cijj + (l/y)w + (1/2) K)8

(/ )( +i + eei + i(1)

In the rotor analysis of Reference 3 the coupling terms between

the modes, Ci, Ki for i 0 j were neglected. During the dis-

cussion following the presentation of Reference 9 some surprise

was expressed that normal mode equations could be coupled. In

fact, the normal modes used refer to an operating condition of

the rotor in vacuum without any airloads. One could establish

the normal modes including linear aerodynamics. In this case

modes and eigenvalues would be complex valued, but the generalized

coordinate equations would be uncoupled. Instead, we followed

the usual practice of using generalized coordinates for real

normal modes and eigenvalues only realized in vacuum, but then

the equations for the normal coordinates Bi become coupled by

aerodynamic terms Cij and Kij, i #

Fig. 1, which is reproduced from Fig. 3 of Reference 3,

shows the longitudinal pitch required io trim a constant pitching

moment vs. advance ratio n for an unloaded rotor with blade
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Lock number y = 12 and blade first flapwise frequency of wl = 1.21.

Without bJade twist Fig. 1 shows a small change in trim when the

second mode is added. With a linear blade twist of 61 
= -.1

radius, there is a substantial second mode effect and increased

aft stick deflection is required to trim the rotor. In order to

examine the effect of the coupling between the modes on moment

derivatives and trim conditions, a four bladed unloaded rotor

with Lock number y = 12, w = 1.21, w2 = 4.33 is selected;. Blade

mass and stiffness distributions are uniform. The characteristics

of the selected rotor are quite similar to those used for Fig. 1.

Since in Reference 3 the modified Lock number y* is used to

account for the effect of first harmonic induced velocity varia-

tions we have

yf = y/(l + ao/8) = 10.26 (2)

for U = .5 and aa = .68.

The methods ABC refer to:

A single mode analysis

B' two mode analysis including intermode coupling

C two m9 de analysis for K2 1 =Kl2=C 1 2
= 0

Table 1 shows the hub moment responses to inputs of unit cyclic

pitch, collective pitch, inflow and blade linear twist. There is

not much difference between the results of methods A and B, how-

ever there are substantial differences between the results of

methods B and C, particularly for the rolling response to Oc which

changes from -.0169 to -.0184 when omitting the intermodal

coupling terms.
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Table 2 shows the cyclic and collective pitch required to

balance a 10,000 ft-lb nose down hub pitching moment at u = .5,

which is the case assumed in Reference 3 shown in Fig. 1. With

untwisted blades, the values of ps, 8 o , 8 c required for trim are

nearly the same for all.three methods. When blades are linearly

twisted with 81 = -.1, the variat on between the results of

methods A and B remains small, however the neglect of the

coupling terms for method C now has a substantial effect. The

longitudinal cyclic pitch for trim changes from 8s = .0306 to

.0460 which is a 50% increase. By looking into the computational

details, one finds that this large difference in trim is mainly

caused by the above mentioned rolling moment derivative with

lateral control which changes from -.0169 to -.0184. This error

is greatly amplified in the trim analysis due to taking small

differences of large numbers. Tables 1 and 2 indicate that the

large second blade flapping mode effect found in Reference 3

for the case of Fig. 1 is caused by omitting the intermode

coupling terms. The omission of these coupling terms can cause

larger errors than the omission of the entire second mode.

In order to show that indeed the omission of the second

blade flap-bending mode has almost no effect on the stability

margins, the same rotor assumed for Tables 1 and 2, except for

y = 5 and three blades was studied with respect to its charac-

teristic values at advance ratio .8 when the gain of a lagged

hub moment feedback control Ki was varied. Fig. 2 shows the

results of the stability analysis except for the high frequency
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Table 1

Control Derivatives

U .5, y = 12(y* = 10.26), wl = 1.21, w 2 = 4.33

Input Response A B C

Cm/aa .0328 .0321 .0322

s = 1 Cg/ao -.0034 -.0043 -.0029

Cm/ao .0364 .0356 .0355

0o = 1 C£/ao .0021 .0009 .0025

Cm/ao -.0089 -. 0086 -.0085

c = 1 C/ad -.0172 -.0169 -.0184

Cm/aa .0284 .0274 .0247

=1 C/a .0054 .0035 .0057

Cm/aa .0275 .0270 .0285

e= 1 Cj/aa .0041 .0036 .0041

Table 2

Trim Values

= .5, y = 12(y*= 10.26), wy = 1.21, 02 = 4.33,

CT = 0, A = 0, (M = -10,000 Ft-lb)

Blade Pitch A B C

Twist Control
8 .0229 .0230 .0235

e 0 -. 0140 -. 0140 -. 0143

c -.0062 -.0066 -.0056

es .0314 .0306 .0460

811 -. 8o  .0496 .0504 .0410

ec -. 0238 -. 0266 -. 0243
c .-



characteristic values due to the second flap-bending mode which

remains quite stable over the selected range of feedback gains.

The single mode moment balance method is explained in Reference

1, also the mode shape factor K. It is seen that all three

methods agree very well with each other so that the single mode

analysis, even in its simplified form, is very adequate for the

rotor configuration indicated in Fig. 2. Examples of stability

characteristics with the same rotor feedback system and comparing

the same 3 methods for a much stiffer blade with tapered thickness

are given in Reference 9 with the result that the single mode

analysis is very good for V = .8 but leads to small errors for

= 1.6.
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Non-Linear Rotor-Body Dynamics

As a first approximation to Rotorcraft flight dynamics one

can use an approach which has been widely applied for rotorcraft.

In this approach the effect of the rotor on the body is described

by a 6 x 6 derivative matrix. If the rotorcraft is symmetrical

with respect to the plane through longitudinal and vertical

axis and if the origin of the body fixed reference system x,y,z

is in the center of gravity of the aircraft, the equations of

motion are:

u - vr + wq = - g sin 6 + X/m

v - wp + ur = g sin 0 cos 6 + Y/m

w - uq + vp = g cos 0 cos 6 + Z/m

+ rq(I z - Iy )/Ix - (pq + r)Ixz/Ix = L/Ix

q + pr(I - Iz)/Iy - (r 2 - p 2 )Ixz/Iy = M/Iy (3)

+ pq(Iy - Ix)/Iz - (p - rq)Ixz/I z = N/I z

= p + (r cos * + q sin *)tan 9

S= q cos * - r sin *
= (r cos * + q sin )/cos 0

Here the positive body axes x,y,z are forward, right, down

respectively. Positive linear velocities u,v,w are in the di-

rections of the positive body axes x,y,z. Positive angular

velocities p,q,r are clockwise seen in the positive x,y,z direc-

tions. The only off-diagonal non-zero term of the inertial tensor

is Ixz. The a-ttitude angles 0,8,$ are taken with respect to earth

fixed axes. If the location of the hub center with respect to



the aircraft c.g. is defined by h, hz, the rotor contributions

to X,Y,Z,L,M,N are, according to the derivative concept, given by

Xh = Xho + Xhuuh + Xhvvh + XhwWh + XhpP + Xhqq + Xhrr (4)

and corresponding equations for Yh and Zh.

Lh = Lho + hzYho + (Lhu + hzYhu)uh + (Lhv + hzYhv)Vh

+ (Lhw + hzYhw)Wh + (Lhp + hzYhp) p  (5)

+ (Lhq + hzYhq)q + (Lhr + hzYhr)r

and corresponding equations of Mh and Nh.

Thus the rotor behavior is described by the 36 derivatives of

the hub forces and moments with respect to the linear and angular

velocities. In addition control derivatives and feedback effects

must be included. For articulated rotors with small hinge

off-set the hub moments are small as compared to the moments of

the hub forces about the c.g. For hingeless rotors the opposite

is true, the more so the stiffer the blades.

The derivative approach to rotorcraft flight mechanics

assumes that the rotor instantaneously adjusts to changes in

linear or angular velocities or to changes in control positions.

While the slow flight dynamics mode s like the phugoid or dutch

roll modes are described well by the derivative approach,

the short period modes may be in error. Very little has been

published from which the magnitude of this error could be ob-

tained as a function of the basic rotor design parameters.

Reference 10 shows that the inclusion pf 3 rotor degrees of
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freedom produces a pronounced short period response of the rotor-

€caft which is absent io the conventiopal 6 x 6 derivative ana-

lytical model. This result refers to an articulated rotor with

off-set hinges. Whether or not for hingeless rotors the effect

of the rotor degrees of freedom will be smaller or larger is

not knowp. It may be also possible, to substantially improve

the derivative approach by using a first order filter for the

rotor response to angular pitching or rolling velocities or to

cyclic control inputs. Pending the accumulation of more

e)perience ith the effects of rotor modps, it is prudent to

includR at least the first cyclic and collective flap-bending

iodep pn a flight dynamics analysis, particlarly if high gain

rotor feedback systems are to be studied, which is the approach

taken in this report.

When formulating rotor-body dynamics in a body-fixed

reference system which is neyessary for flight dynamics purposes,

npmeroup additional terms occur. There are also inflow terms

pvolved which are by no means fully known at present. In a

firstapproximation, following Reference 3, the dynamic inflow

effects can e treated by reducing the blade inertia number.

The following resu.ts refer to a rotor analytical model with

s 'aight blades flexibly hinged at the notor center. The hub is

a sumed to perform linjar velocitips and accelerations in all

three direcions and pitching and rolling velocities and accel-

erai*ons. Gravitational effects ar e omitted. The first of the

following equations is for a bl4de in a rotating reference system
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attached to a moving and accelerated hub. The following equa-

tions are for the rotor moments and forces. The inflow X may

be varying with radius and with azimuth.

Flaping Equation

+ p 2  , ) - ~(pcos-r sini )
2 +2P(qsin~ -pcosJ )

-(qcos+;sinz) R3fmX2dX + [(uh+9"h)cosP
1

R2omXdX
-(Vh-P"h)sin ]8 - (wh+pVh-qUh) R XdX

0

=(1/2)o acR 2(Uhsin+Vhcos ))2+2XR(Uhsin4.+Vhcos1)

[Q-(qsinW-pcos ,)B]+ X2R2 [-(qsin,-pco a)]
2

OXdx + (l/2)pacR2fI h+AR-(Uhcos -Vhsin)

(Uhsin +V h cos\)+XR(psin +qcos -6 )(U 1h s iniJ+VhcoS-')

+XR[Q-(q sini -pcos , ) ] ['"h + "R- (hcoI'i-Vhsin )] (6)

+ X2R 2 [Q-(qsinp-pcosiP)8 ] (psin+qcosi- ) XdX

Pitching Moment From Potor

b 1.

Mh - ( p2 -2) Kcos KR jm 2 dx + hx2h-hzX I. (7)

K=1

Rolling Moment From Rotor

Lh = (p 2  sinR X2dX + hzYh (8)

K= 0

Z Force From Rotor

~E b

Zh J dZ( ') - mr(wh + PV-Uh) R2mXdX (9)

K-1 K=1



where
b

X h = fixp)- n,(uh+q U h) (10)

Yh Jdw ~.) - mr(vh-P Wh) (11)

K1l

WO( ) = tiL 5T-dD )sinji+tlT4cosy (12)

dYNt) =(do-Dcos-jUbsin-, (13)

dZ(o) l- dL(14)

dL =(1/2 pac R{(t inl4 +V ,cO$S p )2'+ 2x ( sin Q+v, cosip)

Q(Os in I-past) +'x.2 R2 Kp- ( ;irL -I1p c o , tj2 9 dx

+ (1/2)pacR T "- (SiCOSNS O (Uhsino+'cys 'p),

dD=(s/2)pcosy 1.~s! 4~o

dL (1/2)pac6R (Uwb2 +2XR~(Uihsinp+V 1 hcos*p)

+X (sjniL,+cos;- ) (u1 2 Q q~ , ,, , ,)i JdX' (16)~,±

dL (1j/2acR i~h+QR -(hcoswhin) (sinf1-2X

QWh±sinQ (Uhcoso '4 hVv QRi 4) cloj psins+qco

+X 2 R 2 (psQTnbqcos&-A ) dX (7



The preceding equations are all dimensional. For the applica-

tions they must be non-dimensionalized. Depending on the

flight condition - curved flight or straight flight - different

linearizations of these equations must be made. In the fol-

lowing section the straight flight condition is treated.



Linearized Rotor-Body Dynamics

We will assume that the aircraft performs a uniform for-

ward motion and is restrained in yaw and side motion. The air-

craft is, however, free to pitch and roll and to move vertically.

Thus we have added the roll motion to the usual longitudinal

flght dynamics since for hingeless rotors pitch and roll are

strongly coupled. Phugoid and dutch roll cannot occur with

the assumed restraint. The main purpose of the analysis is to

obtain information on pitch divergence which is one of the

flight dynamic problems of hingeless rotors. The inclusion of

roll should considerably improve the data on pitch divergence

as compared to a purely longitudinal type of motion, since the

rotor is represented by advancing, regressing and coning modes.

Rotor wake effects are not included and can De pssumed to be

covered by an "equivalent Lock number" for the asymmetric wake

and by an "equivalent coning feedback" for the symmetrical wake.

The fuselage is assumed to carry a fixed wing and a horizontal

tail surface. The wing contributes to vertical and roll damping.

Comparisons with configurations without wing - not shown in '

this report - have consistently resulted in slightly less stable

conditions than with the wing. Wing AC and aircraft CG are

assumed to coincide so that the wing does not contribute to the

pitching moment. Pitch damping of the wing is neglected. The

effect of downwash lag on the tail is neglected, in other words

the equations do not include a rate of angle of attack term.

The downwash itself on the tail is considered by a 50% redugtion

in tail lift slope.



Rather than formulating the problem first for the non-linear

case on the basis of the equations in the preceding section,

and then performing the linearization, we will proceed here by

first writing the linear equations in a space-fixed reference

system and then transforming to a body fixed system. The

equations are first written for straight blades and have been

used in this form for the numerical examples at .4 rotor ad-

vance ratio. First mode blade flexibility and reversed flow

have been used for the numerical examples at .8 advance ratio.

Three blades have been assumed throughout. The moment of the

rotor horizontal forces with respect to the aircraft c.g. have

been neglected as compared to the blade root moments. In con-

trast to the equations of the preceding section, non-dimensional

quantities are used from now on without changing the symbols.

Flapping Equation

7k + (y/2)(C(*k) 8 k + [(y/2)K(*k) + i]Fk + (p2-1)(k"ak)

S Sb/Ib = al meI(*k) t aII me61 (*k) + wmZ(#k)

Body Equations

aI - aIM - aIMi = (p 2 -l)(b/2)(Ib/Iy)I -
)  (19)

a II - a L I = (P 2 -1)(b/2)(Ib/Ix )( - al) (20)

w - IZa - wZw - aIZa = Zh  (21)

This system of equations includes 11 state variables, 6 for the

rotor, 5 for the body (aI. &I' aII' I. w). Performing a
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Floquet type of stability analysis with this system, one finds

two of the characteristic values of the state transition matrix

to be zero. When transforming to body axes we have only 9 state

variables. The transformation to body axes is defined by

Sk =  k + a cos k + aI sin #k
(22)

w w + u w = w - uq, = -q, II = -

The transformed equations read

Flapping Equation

k + P2 k - q cos k - p sink + 2(q sinPk - p cosJk)

+ (y/2)(C(Pk)[8k-qcosk-psink + (y/2)K(k)Bk

- (w-4q)Sb/Ib = wmw(k) (23)

Body Equations

q -qMq - (w/)MM =-(P2-1)(b/2)(Ib/y)I (24)

p -pLp =P21)(b/2)(Ibx 1 (25)

w - q- - wZ qZq = Zh (26)

The flapping equation can be written in the 3 multiblade coordi-

nates a6, BII, 60 which results in 3 separate equations. The

rotor Z force can also be expressed in these multiblade coordinates.

The 9 state variables are then 6I , A8, BII' ,II' Bo' Ao9 q9' P w.

The corresponding equations including blade flap-bending according

to the first mode can be derived with the methods of Reference

1. One obtains
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Flappig Equation

( + ) + 2(q sin - p cos ) xqmrx/ n2mdx

- (p sin +J + q cos ) xnmx/ 2md+ (q I -

nmdx/ dx + U u )rdx (27)

wh ere

UT = x + U sin (28)

U, = w - n + x(p sin 4, + q cos 4) - I cos sn' (29)

Body Euati cns

(30)

p - P L

q- M q s- Mw w - Mh  (31)

w - q - Z w - Zo c= h  (32)

R 2m b + xd - ?dx

a 2 mdx
k=i " (33)

S(U 8 + UpUT) xdx cos k - b(p + Sq) dx

2 m mdx

k=1 (33)

(U 0 + U UT )dxkUr ul
(34



R2 Mb b Y fl fm2dx
Lh =('ak +  k) xrimdx/ mdx - I

Ix k= mdx (35)

2 rx2mdxI (U 6 + U UT) xdx sin Ok + b(q- .5p)
mdx

The angle B is here the slope of the line from rotor center to

blade tip. Including rotor feedback and control inputs we have

for the multiblade pitch

1 + 'r 1 
= - K p(8 cos E - 81I sin C) + 6i cos - 6 sin * (36)

B8i + TII = -Kp(81 sin E + I cos :) + 6i sin c +:6i cos ('37)

So + To - Ko 8o + 60 (38)

The time lag T will be assumed the same for all control actuators.

The control phase angle 4 will be selected for minimal control

cross coupling. The proportional feedback phase angle c will be

selected for minimal change in longitudinal control sensitivity

between advance ratio 0 and .8. Three types of feedback system

will be studied in mumerical examples.

K # 0, K = 3 Coning Feedback (39)

Ko = 0, Kp # 0 Proportional Feedback (40)

Ko = Kp Combined Feedback (41)

The systems were selected such that they could be designed in a

purely mechanical way, whereby the inputs to the control ac-

tuatqrs are assumed to be proportional to Br, B I' Bo. In



case of electronic sensors shaping filters could be used and a

much greater variety of feedback systems would be pos :Ible.
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The Use of Rotor Feedback to Minimize Control Cross 
Coupling

There are two types of control cross coupling: First the

cross coupling due to a direct control input which is the

effect of control applications on the 
fixed fuselage, second

the cross coupling due to fuselage 
angular rates, which is

also called damping cross damping. The stiffer the blades of

a hingeless rotor the smaller the 
time between 4pplication of

a cyclic control and the asymptotic angular rate response.

The pilot will then hardly notice the difference 
between the

two types of cross coupling in flight. A longitudinal control

input will result in an angular rate in pitch and roll which

is determined both by the direct control cross coupling and

by the damping cross coupling.

For an articulated rotor with central 
hinges the blade

flapping natural frequency coincides 
with the frequency of

rotor revolution. If cyclic control is phased such that

maximum longitudinal cyclic pitch occurs 
at 900 azimuth angle,

no direct control cross coupling will 
occur, however, there

will be a damping cross coupling, since for 
example angular

pitch up velocity produces not only down tilting from gyro-

scopic moments but also left tilting from air moments. 
Since

both left and right banked turns involve a pitch up rate, the

rotor tilts left in both types of turns leading to the well

known differences in lateral control requirements for left and

right turns.
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As the blade flapping frequency increases by either the

use of delta three coupling or of off-set hinges or of in-

creasing flap-bending stiffness of hingeless blades, the

azimuth for maximum flapping in response to cyclic control

input or to angular rates is rotated opposite to the direction

of rotor rotation. The cross damping first disappears and

then assumes the opposite sign, whereby a pitch-up rate

produces a right tilt. A useful visualization of these

relations in the form of complex coordinates has been given

in Reference 11. The control phase angle can be adjusted to

compensate for the cross-coupled response both from direct

control effects and from the angular rate effects, provided

the cross coupling remains approximately constant over the

flight speed regime and provided the cross-coupling response

for pitch-roll is the same as for roll-pitch. Without rotor

feedback neither of these two requirements are satisfied and a

compromise control phase angle is the more difficult to

establish the higner the blade flapping frequency. As will be

shown, certain rotor feedback systems go a long way toward

satisfying the two requirements, so that small control cross

coupling values can be obtained for all v with the proper

control phasing.

We will first consider the direct control responses with

fixed hub, then look at rotor responses to pitch and roll

rates, and finally present a few examples of dynamic responses

with the body free to pitch and roll and heave but restrained



otherwise. The two sample rotors have 3 blades and a Lock

number of 5. For the constant thickness blade the flap-

bending frequency is 1.21, for the tapered thickness blade it

is 1.47, same as in Reference 1. The gains Ko and Kp in the

feedback Equs. (36) to (38) have been varied from 0 to 1.5, the

feedback phase angle E from 300 to 900, and the lag time T

from 0 to 1.0. For a rotor operating with 4 rps a value of

T = 1.0 represents a real time lag of 1/4.2w 1/25 second,

which is a realistic value for a modern hydraulic actuator.

A survey of effects of feedback phase angle not shown

here has indicated that from a stability point of view a

value of E = 600 is close to optimum for T = 0 to 1.0. This

value has been selected for the numerical examples. The

stability results to be discussed in a later section show

that feedback gains of 1.5 can lead to instability. We have,

therefore limited the control cross coupling study to a gain

of Kp Ko = 1. The systems will be shown in the sequence: No

feedback, coning feedback, proportional feedback, combined

feedback.

Figs. 3a to 3d show for the uniform blade the cyclic

control power of the 4 systems vs. control phase angle b,

whereby Q = 0 applies to the articulated blade. The signifi-

cance of the control phase angle can be seen from Eqs. (36)

and (37). The 3 curves in each figure correspond to advance

ratios P = 0, .4, .8. The upper and lower graphs represent

control power in terms of rotor tilt angles per unit cyclic



pitch, the middle graphs represent control cross coupling power.

Fig. 3a without feedback shows large variations of longitu-

dinal control power with V and large control cross coupling

changes with V. There is no 4 value where the cross coupling

could be compensated for all u. Fig. 3b with coning feed-

back indicates a considerable improvement. A value of 4 = 300

would result in reasonably low cross-coupling. Fig. 3c with

proportional feedback shows still further improvement 
with

= 450 being now a good choice. Fig. 3d, combined feedback,

also gives at € = 450 almost no cross coupling and almost

no longitudinal sensitivity change between u = 0 and u = .8.

Figs. 4a to 4d for the tapered blade show the same trend,

except that the results are not quite as good. The optimum

control phase angle is for all cases about 4 = 450.

Table 3 gives further insights into the cross coupling

effects of the 4 systems at U = 0, .4, .8. The table shows

the effects of three inputs: collective control 60, roll rate

p and pitch rate q on the rotor coning o , on forward longi-

tudinal tilt BI and left lateral tilt 8ji for the uniform

blade and for the tapered blade. Without feedback we have 4

large increase in collective pitch control sensitivity with 1

and a large pitch-up moment with collective pitch increase.

Both undesirable characteristics are strongly alleviated with

rotor feedback, the combined feedback having the best results.

The effects of roll and pitch rate p and q on coning are
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Table 3

Cross Coupling Effects

Uniform
Blade

K 6 80/60 I/6 o 8 i/p 8 I/p 81i/p qo/q rI/q BII/q

K o = 0 0 .424 0 0 0 1.254 2.869 0 2.869 -1.254

Kp = 0 .4 .528 -. 968 .75 .070 1.170 2.623 -. 119 3.166 -1.282

.8 .933 -2.757 i.630 .131 .841 2.149 -. 393 4.192 -1,239

K o = 1 0 .298 0 0 0 1.254 2.869 0 2.869 -1.254

Kp = 0 .4 .345 -. 633 .245 .046 1.215 2.606 -. 078 3.091 -1.253

.8 .483 -1 ,4A26 , .26 .06 1.028 2 06 -. 204 3.631 -1.111

Ko  = 0 0 .424 0 0 0 .940 1. 1443 0 1.443 -. 940

Kp =1 .4 .407 -. 406 .269 -. 070 .948 1.300 .280 1.321 -. 910

£ = 600 .8 .393 -. 736 .442 -. 086 .886 1.040 .474 1.040 -. 813

Ko = 1 0 .298 0 0 0 .940 1.443 0 1.443 -. 940

Kp = 1 .4 .289 -. 288 .191 -. 050 .928 1.313 .199 1.401 -. 963

E = 600 .8 .282 -. 529 .317 -. 062 .840 1.067 .340 1.291 -. 963

Tapered
Blade

K sO6o I/60o o/p 6ia 1/p Bi/p Bo/q 8I/q 8ii/q

Ko = 0 0 .412 0 0 0 1.029 1.430 0 1.430 -1.029

Kp = 0 .4 .516 -. 622 .444 .22 1.203 1.449 -. 124 1.753 -1.266

.8 .,935 I-L.5 .90 0L 1.082 1.202 -. 385 2.502 -1.344

Ko = 1 0 .292 0 0 0 1.029 1.430 0 1.430 -1.029

Kp = 0 .4 .340 l-.41 .293 .014 1.211 1.443 -. 082 1.702 -1.230

.8 .483 -i. 0 .1 1 .116 1.1 ,-6 r.199 2.113 -1.167

Ko = 0 0 .412 0 0 .642 .8b7 0 .857 -. 642

K 1 .4 .411 -. 314 .261 -. 025 .760 .851 ,170 .883 -. 745
P I

E = 600 .8 .435 -. 617 . -. 018 .'692 .700 .295 .747 -. 668

K o  = 1 0 .292 0 0 .642 .857 0 .857 -.642

Kp = 1 .4 .292 -. 222 .1P 5 -. l18 .75 .86. .120 .920 -. 777

e = 600 .8 .303 -. 430 .302 -. 013 .585 ' 05 .206 .874 -. 757



29

relatively small and probably not bothersome. The cross

damping terms are large in all cases and not much affected

by the feedback systems, except that they equalize I'/p and

Sii/q over the advance ratio range, so that a single control

phase angle would be effective. A control phase angle of

* = 450 would approximately compensate for the damping cross

coupling, at least for the rotor alone without body damping.

A confirmation can be seen in Figs. 5 and 6 which show for

combined feedback at advance ratio .8 the dynamic response to

a longitudinal and lateral step control input using = 450 .

Lateral stick input produces within a few rotor revolutions

steady rate of roll and negligible changes in q and w.

Longitudinal stick input produces negligible rate of roll and

a rapidly decreasing w. Note that the charts are for a

forward step control input, leading to negative w, and for a

left lateral stick input leading to negative p.

The coning angle becomes negative for the forward control

input and positive for the left control input. The tilt 8I

becomes positive (forward) for forward control input, the tilt

8ii becomes positive (left) for left control input. The

lateral tilt is asymptotically zero both for forward and left

control inputs, indicating in the first case absence of

cross coupling and in the second case on asymptotically constant

rate. The type of response is the same for both the rotor

with uniform and with tapered blades. It is quite remarkable
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that a single very stiff rotor can be made to have very good

flying qualities as far as control cross coupling and uniform

control sensitivity over a wide advance ratio range are con-

cerned. Both direct control cross coupling and cross damping

can be effectively compensated by a 450 control phase angle if

the combined gyroless rotor feedback system with gains of unity

is used.

The responses were computed with Eqs. (27) to (34). The

blade parameters are determined from the blade characteristics

defined in Reference I. The body derivatives were determined

for a wing of 6% rotor disk area .5 span over rotor diameter

ratio, 4.5 lift slope and for a horizontal tail with 1.2 R

moment arm, 1.5% rotor disk area and a 1.8 lift slope including

downwash effects. The assumed moment of inertia ratios are

Ix/Ib = 5, Iy/Ib = 75, R2mb/Ix = .60

while the assumed mass ratio is mb/m = .02. With these values

one obtains the body derivatives

Lp = -. 0200 from wing

Mq = -.0075 from tail

Mw = -. 0063 from tail

Zw = -. 0262 from wing

Zw = -. 0026 from tail

Zq = -.0031 from tail

The right hand sides of the body Eqs. (30) to (32) depend,

according to Eqs. (33) to (35) in a complicated way on flapping
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angles and their derivatives, on pitch and roll rates and ac-

celerations, on flap bending mode shape and on inflow and

tangential velocities.

The integrals in Eqs. (33) to (35) have for unit blade

mass the values

1nif,:_, Bla e Tapered Blade

1fmdx Q . 5
Smxdx . 60 5

Smx2dx 33 .033

1mn2dx .268 .033

01 mxndx .296 .043

Note that the dynamic response has not been determined as

frequently done by using rotor derivatives, Lqs. (4) and (5),

but th at instead the complete first fiap-bending mode rotor dy-

namics according to Eq.. (33) to (35) was used. It is planned

for a subsequent study to find out, in what respect response

data as those shown in Fiigs. 5 and 4 snd stability data to be

shown later are affcted by the cornv~itionai rotor derivative

approach as compared to the full r~ t" dynamics approach used here.
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Stability With Fixed Hub

The higher frequency rotor modes are not much affected by

body motions. We, therefore, first present stability charts

for the fixed hub case involving only rotor modes. In addition

to these modes, the rotor-body system has long period or aperi-

odic modes which will be presented in separate charts with a

larger scale.

The analysis derives the Floquet state transition matrix

in the multiblade coordinate form and then extracts the 
charac-

teristic values. The ambivalence in assigning frequency values

is overcome in the same way as in the earlier work by the authors

by using essentially only the positive frequency 
region to

show all characteristic values. Since we have here 3 bladed

rotors, the characteristic values could be moved up or down by

a frequency of 3. For advance ratio V = .4 a straight blade

was assumed and Eqs. (23) to (26) used. For advance ratio .8

flexible blades were assumed and Eqs. (27) to (34) used including

reverse flow effects. Only the combined feedback case with

feedback phase angle c = 600 is shown which proved to be best

from a point of view of minimizing control cross coupling effects.

In Figs. 7 to 10 the solid curves refer to the fixed hub con-

ditions, the dash curves refer to the coupled rotor-body modes

discussed in the next section. Figs. 7a and 7b give for uniform

blade the characteristic values for an actuator lag of T = .5

at advance ratios .4 and .8 respectively. The gain factor is
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increased in steps, using Kp=K o = 0, .5, 1.0, 1.5. The

rotor is almost unstable for a gain of 1.5, whereby the sta-

bility margin is slightly less at U = .8. Figs. 8a and 8b

valid for i = .4 and .8 respectively, give again for the.

uniform blade the effects of the actuator lag time T on the

characteristic values. Ko = Kp = 1.0 is assumed and T is

varied from 0 to 1.0. While for V = .4, Fig. 8a, the values

T = 0 and 1.0 show higher stability margin than T = .5, at

1 = .8 Fig. 8b shows that T = 1 gives a lower stability margin.

Increasing the actuator lag time further, will most likely

lead to instability. Figs. 9 and 10 show the corresponding

characteristic values for the tapered blade. The stability

margins for the same Ko = Kp values are now somewhat larger.

It should be noted again that flapping angles are defined by

the slope of the line from the rotor center to the blade tip.

For the stiffer blade a given flapping angle corresponds to a

larger.blade root moment. The feedback gain is here defined

as blade pitch angle change per unit flapping angle change,

not per unit blade root moment. Figs. 10a and 10b show the

effect of the actuator lag time T. For u = .4 the increase

from T = .5 to 1.0 has a stabilizing effect, while for . = .8

the same increase is strongly destabilizing.
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Stability Including Body Motions

The stability of the rotor-body system where the body is

free to pitch and roll and heave but otherwise restrained has

been studied for the two rotors and for the body with the cha-

racteristics described before. It was found that at .8 ad-

vance ratio stability could not be achieved with any one of

the feedback systems alone without a horizontal tail. On the

other hand, stability could not be achieved with a horizontal

tail alone without a rotor feedback system, even if much

larger tail sizes than 1.5% rotor disk were used. In combination

with a rotor feedback system the addition of a horizontal tail

first brought large improvements in stability, but increasing

the tail size beyond 1.5% rotor disk area was found to be in-

effective.

Figs. 11 to 14 show the stability charts for the rotor-

body system for the uniform blades and for the tapered blades.

The combined feedback system in conjunction with the 1.5%

horizontal tail is assumed. Only the characteristic values

for long period and aperiodic modes are shown in Figs. 11 to

13. The characteristic values for the short period modes are

given in Figs. 7 to 10 in dash l1nes. Where the dash line

coincides with a solid line, the pharacteristic values are the

same as for fixed hub.

Figs. lla and llb show the case of T = .5 for uniform

blades and varying Ko = Kp. The feedback phase angle is again

e = 600 throughout. For zero feedback we have a divergence
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which can be shown to be essentially in pitch. Ko 
= Kp = 1.0

is a stable case both for u = .4 and p = .8. Increasing the

gain reduces the stability margins at u = .8 not only for the

long period mode of Fig. llb but also for the short period

mode of Fig. 7b.

Figs. 12a and 12b show the effect of the actuator lag time

T on the rotor-body system for Ko = Kp = 1.0. There is little

effect on the long period or aperiodic modes. Figs. 13 and 14

show the corresponding conditions for the tapered blade. At

u = .4 the stability margin is even for Ko = Kp = 1 quite

small and becomes larger at U = .8. The effect of actuator

lag time T is small.
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Examples of Turbulence Response

The turbulence response analysis was performed for an ad-

vance ratio of V = .8 using the methos of Reference 12. The

ratio of turbulence scale length over rotor radius is 12. The

excitation is for a standard deviation of the vertical inflow

variable a. = 1. The turbulence analysis even for the sim-

plifying assumption of uniform A over the rotor disk, becomes

quite demanding of computer time for a high order system. In

our case of the rotor-body system in body fixed coordinates

and with the combined feedback we have 13 state variables: 0o,

8 o, 8 I,s I, 6II ;IIs ps q, w, A,, o00, I, 0II resulting in a

13 x 13 covariance matrix, which has been determined for 4

cases: uniform blade with no feedback and with combined feed-

back; tapered blade with no feedback and with combined feed-

back. The 6% of rotor disk area wing and the 1.5% horizontal

tail were present for all 4 cases. In Figs. 15 and 16 a few of

the diagonal terms of the covariance matrix are presented. The

random excitation starts at time t = 0. Approximately steady

state is reached at t = 26 or after about 4 rotor revolutions.

In each Figure curves for zero feedback and for feedback with

Ko = Kp = 1.0, c = 600, T = .5 are shown.

For uniform blades, Fig. 15,the roll rate standard devia-

tion is little affected by the feedback, while the pitch rate

standard deviation is asymptotically much reduced, same as the

coning angle standard deviation. The side tilt standard deviation
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is little affected by the feedback, however the longitudinal

tilt standard deviation is very much reduced. As can be seen

from the relative magnitudes, the longitudinal random flapping

angles are without feedback much larger than the lateral and

coning values, so that blade loads will be mainly determined

from longitudinal tilting. With feedback So, ogi and aB I

have about the same value, indicating much reduced random blade

loads.

For the tapered blade, Fig. 16,the pitch rate standard

deviation is not much affected by the feedback system, while

the roll rate standard deviation is much reduced by feedback.

All blade variable standard deviations, 8o, agoi, $I are

very much reduced by the feedback system, so that large re-

ductions in blade loads will occur.
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Conclusions

Four flight dynamics problems of hingeless rotors increase

in severely with increasing blade flap-bending stiffness and

with increasing advance ratio:

1) Longitudinal control sensitivity

2) Control and damping cross coupling

3) Pitch divergence

4) Gust sensitivity

Three gyroless full authority rotor feedback systems with flapping

inputs to the control actuators were studied with respect to

their effectiveness in alleviating problems 1 and 2. Coning

feedback, proportional tilting feedback and a combined feedback

were all found effective, the last one giving best results.

This best system was further studied with respect to alleviating

problems 3 and 4 and was found effective. The following detail

conclusions have been obtained assuming two very different

blade designs, one with uniform thickness and 1.21 blade flap-

bending frequency, the other with tapered thickness and 1.47

blade flap-bending frequency. Both blades have a Lock number of

5. Both rotors have 3 blades.

*For both rotors control and damping cross coupling could

be largely removed and control sensitivity made uniform

between 0 and .8 advance ratio with a combined rotor

feedback system with 600 feedback phase angle and 450

control phase angle.
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*Feedback gains should be limited to about one unit of

blade pitch angle change per unit of blade flapping

angle change (line from rotor center to blade tip) to

avoid instability.

-Actuator time lag stabilizes some configurations and

destabilizes others and is an important parameter.

*Random rotor loads and body motions are greatly reduced

by the combined rotor feedback system.

Further studies should establish in what respect coning feed-

back alone, or possibly a vertical acceleration feedback into

collective pitch, and proportional feedback alone can achieve

results which may be still acceptable though not as good as the

results shown for the combined feedback system. Other than 3

bladed rotors should be treated.

Though the trends established by the study are believed to

be correct, the detail results are affected by a number of

simplifications which should be removed in future work, such as

the uniform forward velocity, the restraints in lateral motion

and yaw, the neglect of horizontal rotor forces and other

simplifications. Of interest are also the effects of the

rotor feedback systems on curved flight dynamics and on g-loads

per unit control deflection.
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Figure Captions

Fig. 1 Effect of Second Flap-bending Mode Ac-
cording to Reference 3.

Fig. 2 Rotor Stability Chart for 3 Analytical
Methods.

Fig. 3 Cyclic Control Power for Uniform Blade
a. No Feedback
b. Coning Feedback, Ko = 1
c. Proportional Feedback, K = 1, = 600

d. Combined Feedback, Ko=K p = , c = 600

Fig. 4 Cyclic Control Power for Tapered Blade
a. No Feedback
b. Coning Feedback, Ko = 1
c. Proportional Feedback, Kp = 1, c.= 600

d. Combined Feedback, Ko=Kp=l, = 600

Fig. 5 Responses to Step Control Input, p = .8,
KO = Kp = 1, c = 600, Uniform Blade

a. Longitudinal Step Input
b. Lateral Step Input

Fig. 6 Responses to Step Control Input, p = .8,
Ko = Kp = 1, E = 600, Tapered Blade

a. Longitudinal Step Input
b. Lateral Step Input

Fig. 7 Fixed Hub Stability Charit, Uniform Blade r = .5
a. p = .4
b. U = .8

Fig. 8 Fixed Hub Stability Chart, Uniform Blade,
Ko = Kp = 1.0

a. p =,.4
1 = .8

Fig. 9 Fixed Hub Stability Chart, Tapered Blade r = .5
a. p = .4

S=- .8

Fig. 10 Fixed Hub Stability Chart, Tapered Blade
KO = Kp = 1.0

a. p .4
b. p = .8
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Fig. 11 Rotgr-Body Stability Chart, Uniform Blade

r = .5

a. p = .4
b. j = .8

Fig. 12 Rotor-Body Stability Chart, Uniform Blade
Ko = Kp = 1.0

a. = .4
b. u = .8

Fig. 13 Rotor-Body Stability Chart, Tapered Blade
r = .5

a. p = .4
b. y = .8

Fig. 14 Rotor-Body Stability Chart, Tapered Blade
Ko = Kp = 1.0

a. = .
b. p = .8

Fig. 15 Random Response to Vertical Turbulence,
Uniform Blade, Zero Feedback and Combined

Feedback, 9 = .8

Fig. 16 Random Response to Vertical Turbulence,
Tapered Blade, Zero Feedback and Combined
Feedback, u = .8
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